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A model for the kinematics of a turbulent flow close to a solid boundary is explored. 
The field is assumed to be homogeneous in the direction of mean flow. The equations 
of motion are solved numerically for a flow which is periodic in time and in a direction 
transverse to the direction of mean flow. The period is taken to be the time interval 
between ‘bursts ’ and the wavelength, the spacing of the streaky structure close to the 
wall observed by a number of investigators. Good agreement is obtained between the 
calculated flow field and experimental results, especially for y+ < 15. This agreement 
suggests that the flow oriented eddies in the viscous wall region can be represented by 
a model which views the flow in this region to be coherent and to be associated with 
spanwise flow deviations in a well-mixed outer region. The model allows for the 
periodic movement of low momentum fluid from the wall, which, because of the 
assumption of a well mixed outer region, gives rise to a shear layer. This seems to 
correspond to the observed ‘ bursting ’ phenomenon. The calculations confirm the 
suggestion by Fortuna and Hanratty (Fortuna 1970; Hanratty, Chorn & Hatzia- 
vramidis 1977) that the secondary flow in the viscous wall region generated by these 
spanwise flow deviations gives rise to the deveIopment of large velocity fluctuations 
in the direction of mean flow and accounts for the experimentally observed maximum 
in the velocity fluctuations close to the wall. Also, the comparison of calculations with 
measurements of the average velocity and with an experimental quadrant analysis 
ofthe Reynolds stress suggests that the secondary flow is making a major contribution 
to the Reynolds stress. 

1. Introduction 
The viscous wall region of a turbulent flow is the region close to a wall where viscosity 

makes a significant direct contribution to the transfer of momentum. It occupies the 
space between y+ = 0 and y+ = c. 30, where y+ is the distance from the wall made 
dimensionless using the wall parameters, v and u* = (7Jp)i .  In  recent years con- 
siderable attention has been given to the discovery that turbulent flow in the viscous 
wall region is coherent and that repetitive processes can be identified that seem to 
play an important role in the production of turbulence. 

This interest was initiated by Beatty, Ferrell and Richardson (Corrsin 1956) who 
pumped dye solution through a pipe and, after flushing with water, observed the 
formation of the residual dye into streamwise filaments a t  the wall. The existence 
of this streaky structure was confirmed by Hama (Corrsin 1956), who injected dye 
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through a wall slot. However, Kline and his co-workers (Kline & Runstadler 1959; 
Kim, Kline & Reynolds 1971; Kline et al. 1967) through the extensive utilization of 
these dye techniques, as well as hydrogen bubble techniques, properly interpreted 
these results. They showed that the wall dye streaks are regions of low axial velocities 
and that after lifting from the wall, the streaks undergo a strong interaction, called 
a ‘burst’, with the turbulent fluid outside the viscous wall region. A number of 
laboratories have confirmed these results and have added additional qualitative and 
quantitative information about the kinematics of the viscous wall layer. The two chief 
structural parameters which have resulted from these studies are the definition of the 
spacing between streaks, A, and the period between bursts, TB. 

The two dominant theoretical notions that have been used to account for the 
kinematic behaviour of the viscous wall region have been that the region is driven by 
the flow outside or that the events are due to a hydrodynamic instability. The latter 
explanation has been particularly emphasized in recent works of Mollo-Christensen 
(1971), Landahl (1972), Blackwelder & Kaplan (1972) because of the ‘apparently’ 
spectacular events associated with ‘ bursting ’. 

The present paper uses the notion of a driven flow in that it associates flow patterns 
close to the wall with velocity fluctuations in a well mixed outer region. It shows that 
a regular eddy model with length and time scales given by presently available structural 
information is consistent with visual observations and quantitative measurements of 
turbulence in the wall region. However, since the model does not specify the origin of 
the flow fluctuations in the outer flow it does not really answer the question of whether 
the flow in the viscous wall region is ‘driving’ the outer flow or just responding 
passively. 

The first treatment of the fluctuating flow in the viscous wall region as a response 
to the outside flow was by Taylor (1932). In  order to explain measurements of the 
spatial variation of turbulent velocity fluctuations close to a wall by Fage & Townsend 
(1932), Taylor assumed that the fluctuating flow in the immediate vicinity of the 
wall is a response to pressure fluctuations imposed by the outer flow. He used a 
truncated form of the linearized momentum equations to relate the velocity field to 
the pressure field. This type of linear analysis was later carried out by Sternberg (1962, 
1965), Schubert & Corcos (1967) and Gurkham & Kader (1970). More recently 
Hatziavramidis (1978) has shown that linear theory can be used only to describe the 
high frequency fluctuations and that nonlinear effects will have to be taken into account 
to describe the energy containing fluctuations. 

The realization that the linearized momentum equations do not properly take into 
account the Reynolds stresses prompted Fortuna and Hanratty (Fortuna 1970 ; 
Hanratty et al. 1977) to take a different approach in describing the interaction between 
the viscous wall region and the outer flow. They assumed that flow just outside the 
viscous wall region is primarily in the direction of mean flow. Spanwise deviations 
in these flow lines can be associated with small velocity fluctuations in the transverse 
direction which are dampened close to the wall by viscous effects. From a consider- 
ation of the law of conservation of mass Fortuna and Hanratty assumed that the 
viscous dampening of these flow deviations gives rise to secondary flows of the type 
shown in figure 1.  These secondary flows bring excess x momentum to the wall, 
exchange momentum with the wall, and then carry momentum deficient fluid away 
from the wall. Consequently, as indicated in figure 1, the two components of the 
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FIGURE 1. Idealized eddy pattern at the wall. 

velocity gradient at the wall, s, and s,, would have spanwise variations which are 
out of phase by approximately &A. Fortuna and Hanratty assumed that the trans- 
verse velocity component associated with the secondary flow is homogeneous in the 
direction of mean flow, and varies harmonically in the transverse direction and 
randomly in time 

The parameter A was selected to agree with the observed streak spacing, B( t )  was 
assumed to be given by a Gaussian distribution and @ was selected so as to be con- 
sistent with Laufer’s measurements of mean-squared values of the turbulent fluctu- 
ating velocity. For simplicity f (y) was set equal to y. The velocity component normal 
to the wall was calculated from the law of conservation of mass using the assumption 
that the flow is homogeneous in the z direction. The velocity in the z direction U(y, z, t )  
was calculated from the 2 momentum equation using the boundary condition that 
U = U, for large y. The parameter U, was selected so that the calculated average 
velocity profile agreed with Newton’s law of viscosity at small y. In  order to solve the 
momentum equation Fortuna and Hanratty argued that the energy containing eddies 
close to the wall were of low enough frequency that a pseudosteady-state assumption 
could be made whereby the transient term p aU/at could be neglected. 

The analysis of Fortuna and Hanratty was largely motivated by the results of 
measurements of the two components of the fluctuating velocity gradient, s, and sol, 

w = B ( t ) f ( y )  sin (2nzlA).  (1) 
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at multiple locations on a wall using electrochemical probes which are the mass transfer 
analogue of the hot film probe. The measurements of the spatial correlation coefficients 
of s, and s, by Mitchell & Hanratty (1966), Fortuna, Gilead & Hanratty (1972) and 
Chorn (Hanratty et al. 1977) clearly show that scales in the x direction are about 40 
times the scales in the x direction and therefore support the assumption of homogeneity 
in mean flow direction. Simultaneous measurements of s, at a number of locations by 
Eckelman (1971) gave no evidence that close to the wall outflows are much more 
intense than inflows. More recent measurements by Lee, Eckelman & Hanratty (1974) 
show the relative phases of the functions describing the spatial variation of s, and s, 
are what would be expected from such a model. Even though the calculations by 
Fortuna and Hanratty gave good agreement with measured time averaged velocities 
and with the observed relation between polymer drag-reduction and h (Hanratty et al. 
1977), the model has a number of difficulties. The chief of these is the assumption 
that the energy containing eddies can be represented by a pseudo-steady state 
assumption. 

In  this paper the formulation of Fortuna and Hanratty is extended by including 
transient terms and by solving the nonlinear momentum equations for the secondary 
flow rather than making ad hoc assumptions regarding the spatial variation of w. 

The nonlinear model explored in the work assumes that a coherent motion exists 
for 0 < yf < 30-50 and that the region beyond y+ > 30-50 is well mixed. The trans- 
verse flow at the edge of the viscous wall layer is assumed to be given by the regular 
function 

( 2 )  w = wL sin - cos o t .  

Here h and o are assumed to be approximately equal to the spacing of the dye streaks 
and the frequency of bursting, and wL is a constant. The secondary flow is calculated 
by seeking a periodic solution of the non-steady Navier-Stokes equation, simplified 
by assuming the flow is homogeneous in the direction of mean flow. Because of 
this latter assumption, the y and z momentum equations are decoupled from the 
x momentum equations. After the secondary flow is calculated, the unsteady x 
momentum equation is solved assuming that the velocity in the mixed region is 
given by measurements of the average velocity. 

The assumption of coherency is employed in these calculations by allowing the 
calculated flow field for y+ <yo+ to be completely deterministic. In  addition, no 
attempt is made to  account for the effect of small scale disturbances by including 
turbulent stresses in the equations defining the secondary flow. 

The approximation of a well mixed flow for y f  > yo+ is motivated by experimental 
measurements of the velocity field. These show that the average velocity and the 
mean squared values of the three components of the fluctuating velocity vary rather 
slowly with distance from the wall for yf > 30. However, because of the presence of 
the wall, viscous dampening occurs and there is a very rapid variation of these 
quantities for yf < 30. The model attempts to characterize this viscous interaction of 
the turbulent flow with the wall. Measurements of the transverse component of 
the fluctuating velocity gradient at  the wall suggest that very close to the wall the 
dominant period characterizing the variation of the transverse component of the 
fluctuating velocity, w, is approximately equal to the spacing of the streaky structure 
(Lee et al. 1974). Furthermore, measurements at  y+ = 8 of the instantaneous variation 

2nz 
h 
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of the lateral component of the turbulent velocity fluctuations, w, in the lateral 
direction (see figure 3-30, Schraub & Kline 1965) show that the magnitude of awl& 
does not depend on its sign. The simplest function characterizing the spatial variation 
of w at the edge of the viscous wall region which is consistent with the above obser- 
vations and the observations that turbulence properties at  the wall are approximately 
homogeneous in the direction of flow is equation (2). 

Observations of the instantaneous values of s, at a number of locations on the wall 
reveal the existence of spatial variations of s, of a smaller scale than A. The model 
assumes these are contributing a small part to the total energy of the w velocity 
fluctuations so that wL may be approximated from measurements of the intensity of 
turbulence a t  y+ z 30. 

However, these small-scale fluctuations can be characterized by rather large values 
of awl&. Since, from the continuity equation the velocity component normal to the 
wall is given by 

v =so” -:ay, 

it  is seen that small scale variations in w could be making large contributions to the 
normal velocity component. Consequently, it  is envisioned that the v velocities 
associated with the eddies modelled in this paper could be much smaller than would 
be indicated by turbulence measurements very close to a wall. 

2. Statement of the model 

of homogeneity in the x direction the velocity field is given by the equations 
The average flow is assumed parallel to the x direction. By using the assumption 

(3) 

(4) 

au au au a2u a2u 

at az ay 

aw av 
az ay 

-+w-+v-=v 

-+- = 0. 

These are to be solved subject to boundary conditions 

av au 
z = o ,  &A, w=o, - = o ,  -- - 0, 

ax az 

(5) 

(7) 

y = o ,  w = v = u = o ,  (8) 

(9) 
2nz 
h y = yo, w = wL sin - cos wt, 

v in accordance with (6), 

where U, is the measured time average velocity at  yo. For this purpose we used the 
average velocity measurements given by Laufer (1 954). For initial conditions we took 
w, v from the inviscid irrotational solution and U = g(y). 

u = i7 + u 21 u,, 
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Equations (3), (4) and (6) can be reformulated in terms of the vorticity 5 and the 

(10) 
ay." 

stream function Y, defined as 
aw av g =  --- 

az ' ay a i  
The new variables g and Y are related through the equation 

v = -  a?r w = -- 
ay '  

av a v  -+- =-[. 
ax2 ay2 

After eliminating the pressures between (3) and (4) 

The boundary conditions for (1 1) and (12) are 

z =  0 , ih )  Y = 0, g =  0, 

a y  2nz a v  
aY aY2 

?/ = yo, - = -w,sinT, coswt- = 0, 

Finite difference methods were used to find solutions of (ll),  (12) and (5 ) .  The field 
was divided into 32 increments in they direction and 26 increments in the z direction. 
The time step was selected so as to satisfy the Neumann condition 

At 

The vorticity equation (12) and the 2 momentum equation were solved using the 
alternating direction implicit method which was introduced by Peaceman & Rachford 
(1955). The stream function equation was solved using the successive over-relaxation 
method known as the 'extrapolated Liebmann method'. The proposal of Frankel 
(1950) was found to give a good estimate of the relaxation factor for the present 
calculations. 

In  the finite difference approximation of the vorticity equation, the calculation 
of vorticity values at time n from those at time n - 1 in two steps yields two systems 
of equations which are respectively implicit in the z and y directions. These equations 
contain values of Y at the n + 9 and n + 1 time steps. Direct calculation of Cn+l and 
Yn+l would require the implicit coupled solution of the finite difference approximation 
of the 5 and Y equations. In  order to avoid this we have used the iterative procedure 
suggested by Pearson (1965) and Aziz & Hellums (1967). The boundary conditions for 
g at y = yo and y = 0 were approximated by 

where (i, 1) denotes grid points a t  the wall and (i, J )  denotes grid points at  yo. 



Representation of the viscous wall 661 

Dimensionless Z 

Dimensionless 2 

FIGURE 2 (a, b ) .  For legend see page 665. 

Details regarding the numerical procedures and the stability of the calculations 
can be found in a thesis by one of the authors (Hatziavramidis 1978). 

Calculated values of 6, Y, and U were found to vary periodically with time after 
6 5  periods. The characteristics of this periodic solution are discussed in the remainder 
of this paper. 
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FIGURE L ( c ,  d) .  For legend see page 665. 

3. Secondary flow patterns 
Calculations of the stream function have been carried out by Hatziavramidis (1978) 

for the conditions yo+ = 45, A+ = 100, Ti = 100 and yo+ = 32, A+ = 100, T& = 100, 
where TB is the period defined as 2n/f and superscript + denotes quantities made 
dimensionless with friction velocity u* and kinematic viscosity v. The results for these 
two cases are similar so only the y$ = 45 secondary flow patterns are presented here. 

Figure 2 shows the evolution of secondary flow throughout a period of time approxi- 
mately equal to one half the experimentally determined bursting period. The 
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Dimensionless Z 

Dimensionless Z 

FIQWBE 2 (e, f). For legend see page 665. 

streamlines showing the main trends of the secondary flow are plotted at  times selected to 
illustrate the variety of flow patterns. Consequently they arenot equally spaced in time. 

At t = 0 the flow pattern shows a strong inflow at z = 0 and a strong outflow at 
z = &I. At t = 0.21TB a small separation bubble appears close to the wall in the region 
of the outgoing flow. Because of the imposed outer boundary condition the w velocity 
reverses direction at t = 0.25TB. At t = 0.26TB a streamwise vortex larger than 
the separation bubble appears close to the upper boundary. In  subsequent times the 
streamwise vortex and the separation bubble increase in size, until at t = 0.31TB the 
vortex occupies the whole region of coherency. At t = 0.31TB the vortex reverses 
direction a t  the upper boundary. In  subsequent times the separation bubble and the 
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Dimensionless Z 

Dimensionless Z 

FIGURE 2 (g,  k ) .  For legend see page 666. 

streamwise vortex shrink in size until they eventually disappear. During this period 
the outflow at z = 0 and the inflow at z = 3h become stronger and the secondary flow 
pattern shows phase changes as well as shear layers. See, for example, t = 0*39TB and 
t = 0-44TB in figure 2. A t  t = 0-50TB the pattern is the same as for t = 0 except that 
the direction of flow is reversed. It is noted from the imposed boundary conditions 
that at  t = 0 the transverse flow a t  yo has its maximum. This velocity decreases with 
increasing time until at  t = 0.25TB it changes direction. From t = 0.25TB to t = 0.45T' 
the flow field is in a transitional stage during which the whole flow field changes 
direction. The transition is characterized by the presence of vortical flows and of shear 
layers. 
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FIQURE 2. Calculated secondary flow pattern, y: = 47, A+ = 100 and T: = 100. (a) t = 0.212'~; 
( b )  t = 0.262'~; (c) t = 0 .31T~;  (d) t = 0.322'~; (e) t = 0.342'~; (f) t = 0.392'~; (9)  t = 0.44%; 
(h) t = 0.452'~; (i) t = 0.492's; ( j )  t = 0.592'~. 

From t = 0.45TB to t = 0.75TB the w velocity component is negative throughout the 
field with the exception of the small separation bubble that appears at t = 0.71TB. 
The period t = 0.75-0*95TB is another transition period in which the w velocity 
changes direction throughout the field. Thus these transitional structures appear for 
about 40 percent of the time. 
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FIGURE 3. Calculated instantaneous normal velocity profiles, y,' = 45, A+ = 100 
and TBf = 100, at Z+ = 0 and for times t = 0 to t = 0.992'~. 

These results appear consistent with visual studies of the wall region. For example, 
Brodkey and his co-workers (figure 4 in Brodkey et al. 1974) found that, on the average, 
ejections of low speed fluid occur 30 per cent of the time, inrushes of high-speed fluid 
occur 30 per cent of the time and interactions between ejections and inrushes occur 
40 per cent of the time. The small separation bubbles appearing at t = 0.21TB and the 
streamwise vortices in the final stages of their shrinkage also appear to exhibit many 
of the characteristics of the 'recirculation cells' described by Offen & Kline (1975).  

The flow lines shown in figure 2 would suggest that dye injected through a wall slot 
would initially form a rising plume at *A. At about t = 0-39TB this plume would 
disappear at  &A and would start to appear a t  z = 0 at about t = 0.44TB. However, 
before disappearing at &A it  recedes toward the wall, perhaps giving the appearance 
of an oscillation, and has a lateral movement. This resembles in some ways the 
description of breakup given by Offen & Kline (see figure 2 of their paper, 1975). 

The streamwise vortices observed over a part of the cycle are different from the 
counter-rotating eddies proposed by Townsend (1956) and Bakewell & Lumley (1967).  
The secondary flow velocity components are small when these vortices appear so 
they are not associated with intense outflows and inflows in the region of coherent 
motion. They exist only during transitional stages that separate periods during 
which the secondary velocities are large. 

The calculations for y$ = 32 have some slight differences from those just presented 
for y$ = 45. The separation bubble appears earlier, t = O*llTB and t = 0.61TB com- 
pared to t = 0.21TB and t = 0.71TB, and grows to a larger size. The streamwise vortices 
are found to last for a shorter period, t-0.26TB-@325?' and t = 0.76TB-0*82TB 
compared to t = 0.26TB - 0.44TB and t = 0.56TB - 0.94TB. 
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FIGURE 4. Calculated instantaneous velocity profiles, y: = 45, A+ = 100 
and Ti = 100, at Z+ = 24 and for times t = 0 to t = 0.99T~. 

4. Normal and transverse velocities 
The magnitudes of the velocities associated with the secondary motion were studied 

by calculating v(y, t )  a t  z = 0 and w(y, t )  a t  z = 0.24h. Profiles of v and w at selected 
times are shown in figures 3 and 4. The horizontal dashed lines in these figures denote 
zero values of v or w. The velocity components are expressed in non-dimensionless 
form by normalizing with the friction velocity, u* = (7Jp)+. 

From figure 3 it is seen that the normal velocity component has a maximum 
amplitude of about 5u* and that this occurs a t  t = 0.07TB and t = 0.60TB. It is seen 
that strong inflows a t  z = 0 (large negative v velocities throughout the whole region 
0 < y+ < 45) occur at times t = 0 to 0.25TB and t = 0.94TB. Strong outflows occur at 
z = 0 for t = 0.45TB to 0.75TB. Small values of v are observed for t = 0.26TB to 0.46TB 
and t = 0.76TB to 0.93TB, when transitional patterns are shown to  dominate the flow 
in figure 1. The v velocity reversed direction twice during a period, at t = 0*32TB and 
t = 0.83TB. From figure 2 it  is also seen that, on the average, close to the wall the v 
velocity component assumes larger magnitudes during inflows than during outflows. 
However, far from the wall, the v velocity has larger magnitudes for outflows, on the 
average, than it does for inflows. 

In  contrast to the v profiles, the w profiles shown in figure 4 are highly inflexional a t  
certain times ( t  = 0 to 0.06TB, t = 0.46TB to 0.54TB, and t = 0.96TB to TB) and show 
phase reversals a t  t = 0.26TB to 0.42TB and t = 0.76TB to 0.92TB when streamwise 
vortices dominate the flow. The w velocity components are also noted to assume their 
largest values during periods of strong inflows and outflows. 

These calculations of the v and w velocity components show periods of high activity 
for the secondary flow (strong inflows and strong outflows) alternating with periods 
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FIGURE 5. Calculated instantaneous axial velocity profile, y,' = 46, A+ = 100 
and Ti = 100, at Z+ = 0 and for times t = 0 to t = 0.99T~. 

of low activity (transitional flows). Many of the features of these calculated velocity 
profiles appear to agree with experimental observation. 

Corino & Brodkey (1969) and Grass (1971) have observed very large normal 
velocities during ejection (strong outflows) and sweep (strong inflow) stages. Accord- 
ing to Corino & Brodkey the vertical velocity during the most active stages of coherent 
motions, ejections and sweeps, can be as large as 30 per cent of the axial velocity. 
Grass (1971) has also reported large transverse velocities as in a stagnation-type flow 
pattern associated with sweeps. Eckelmann (1974)) Grass (1971) and Brodkey, Wallace 
& Eckelmann (1974) have observed that inflows are larger than outflows close to the 
wall and that outflows are stronger than inflows far from the wall. 

5. Instantaneous axial velocity profiles 
Calculated instantaneous axial velocity profiles at z = 0 and a t  z = 0.22h are shown 

in figures 5 and 6. In  these figures the time averaged velocity profiles are indicated 
by dashed lines. 

The instantaneous axial profiles at z = 0 show positive deviations from the mean 
velocity profile far from the wall and negative deviations close to the wall a t  the 
beginning of the period (t = 0 to t = 0.13TB). Over the time t = 0 to t = O.34TB increases 
in the axial velocities are noted. This acceleration is stronger far from the wall. It is 
noted that this acceleration occurs at the same time that strong inflows occur at 
z = 0, so that it is associated with the convection of momentum from the outer flow 
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FIGURE 6. Calculated instantaneous axial velocity profiles, yo+ = 45, h+ = 100 
and Tfg = 100, at Zf = 22 and for times t = 0 to t = 0.99T~. 

to the wall region. During the acceleration, inflexion points gradually disappear from 
the axial velocity profile and a blunt velocity profile with a region of uniform velocity 
expanding from the upper boundary toward the wall develops. 

At t z 0.35TB a deceleration of the axial velocity profile begins and continues to 
t 0.79TB. This deceleration occurs over the period that outflows are occurring a t  
z = 0. At t = 0.63TB the axial velocity profile is the same as the mean profile. At 
subsequent times (t  = 0-65TB to 0.84TB) a distinct shear layer is present at the upper 
boundary which separates the regions of coherent flow from the outer flow, as evidenced 
by a strong discontinuity in the axial velocity profile right a t  the upper boundary. 
This shear layer appears because of the movement of low momentum fluid from the 
wall. The discontinuity is a consequence of the assumption of a well mixed outer 
region. The change in the axial velocity might not be so sudden if a more sophisticated 
matching between the inner and outer flows were used. Negative deviations of the 
instantaneous axial velocity from the mean velocity profile are observed a t  all values 
of y for t = 0.84TB to t = 0.91TB. However no shear layer is present a t  the upper 
boundary. 

Figure 6 for z = 0.22h shows that the velocity profiles alternate between acceler- 
ation and deceleration stages. The acceleration or deceleration always starts in the 
region close to the upper boundary. Viscous effects close to the wall slow down the 
rate of change of axial velocity. During the acceleration stages, inflexional points 
disappear from the velocity profiles, and blunt velocity profiles with regions of uniform 
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FIGURE 7. Calculated instantaneous axial velocities, y: = 45, hf = 100 
and Ti = 100, at y+ = 18.28 and for times t = 0 to t = 049%. 

velocity, expanding from the upper boundary t o  the wall, appear. This is similar to 
what is observed in the axial velocity profiles at  z = 0. However, instantaneous axial 
velocity profiles a t  z = 0.22h never show steep discontinuities (shear layers) a t  the 
upper boundary as do the instantaneous profiles a t  z = 0. 

There seems to be some differences in the literature in the definition of the actual 
event of bursting. We have chosen to define bursting as that period over which there 
is strong efflux of negative momentum to the outer flow. It is evidenced in these 
calculations by discontinuities at  the upper boundary, t = 0.65TB to  t = 0.84TB. (At 
z = 0*50h, it occurs from t = 0-15TB to t = O.34TB.) It is to be noted that according 
to the above definition, dye streamers formed a t  a wall slot would disappear from the 
z = 0 location shortly after the bursting. The above definition of bursting implies that 
it occurs about 20 per cent of the time and that it occupies a region of thickness 
Az+ c 44. This result is in agreement with an estimate of 18 per cent by Corino & 
Brodkey (1969). The calculated profiles shown in figure 5 are in striking agreement 
with measured velocities for y < 0.4 in. presented by Kim et al. (1971) in figure 6 of 
their paper. The following paraphrased description of the change of the velocity 
profile over a bursting cycle is given by them: Initially, the profiles show positive 
deviations from the mean velocity profile. In  subsequent times the instantaneous 
axial velocity decreases until the profile resembles closely that of the mean profile. 
Further deceleration results in the formation of discontinuities of the axial velocity. 
The next stage is an acceleration of the fluid which starts at  the upper boundary and 
moves toward the wall. 

The properties of the calculated velocity profiles seem consistent with a number of 
other experimental results reported in the literature. During the deceleration phase 
deficiencies as high as 50 percent are observed in the instantaneous velocity profile 
in agreement with observations made by Nychas, Hershey & Brodkey (1973). Grass 
(1971) has observed that inrushes of fluid to the wall are associated with acceleration 
and ejections of fluid from the wall with deceleration of the axial velocity. 
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Dimensionless Y 

FIGURE 8. Comparison of a calculated mean velocity profile, y: = 45, 
A+ = 100 and Ti = 100, with measurements by Laufer (1954). 

In  figure 7 calculated axial velocity profiles a t  y+ = 18-28 are shown. A common 
feature of all of these profiles is the large spanwise variation of the axial velocity. 
The ratio of the axial velocities between the faster and slower moving fluid varies 
between 1-5 and 2-5. Kline et al. (1967) from their measurements, found that this 
ratio varies between 1.2 and 2-9. From figure 6 it is seen that a region of low speed 
fluid, which is the result of the movement of momentum deficient fluid outward from 
the boundary, appears alternately at  the two boundaries, x = 0 and z = *A as the region 
of maximum outflow shifts between 0 and BA. 

It can also be seen that the spanwise extent of the high speed region is larger than 
the spanwise extent of the low speed region. At certain times large changes in axial 
velocity are noted to occur over a small region. This coexistence of fluids of quite 
different velocity has been observed experimentally by Corino & Brodliey (1969) and 
described by them as a two-layer velocity field. Hinze (1975) has described it as a 
‘vertical’ shear layer and has pointed out that it may be a region of high viscous 
dissipation. In agreement with the calculations presented in figure 6 Schraub & Kline 
(1965) observed that a t  y+ 10 the high speed streaks are wider than the low-speed 
streaks and Kim et al. (1971) determined that the spanwise extent of a low speed 
streak is z+ 10-30. 

6. Statistical analysis 
In the previous three sections calculated properties of the instantaneous velocity 

field were compared with observations. In  this section average properties are com- 
pared to measured statistical properties of wall turbulence. Averages at a given y+ 
were obtained by averaging over one period in time and half the wavelength in z. 
Two sets of parameters were used in these calculations y$ = 38, A+ = 100, TA = 90 
and y$ = 45, A+ = 100, Ti = 100. 

Figure 8 compares the calculated average velocity profile with that measured by 
Laufer (1954). Here the average velocity has been normalized with the friction velocity. 
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FIGURE 9. Comparisons of calculated turbulent intensities, y: = 45, A+ = 100 and 
Ti = 100, with meaaurements by Laufer (1954). A, u+; a, v+; 0, w+. 
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FIUURE 10 Comparison of calculated skewness and flatness, y,' = 38, A+ = 100 
and Ti = 90, with measurements by Kreplin (Eckelmann 1914). 
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FIQTJRE 11.  Comparison of calculated classified Reynoldsstresses, y: = 45, A+ = 100 and Tz = 100, 
with measurements by Brodkey et al. (1974). V---V, quadrant I; O-.---O, quadrant 11; 
A-...-A, quadrant 111; 0 ...... 0, quadrant TV. 

Good agreement is noted particularly for y+ < 25. The region y+ > 25 appears to 
provide a reasonable match for the relation 

(19) 8+ = 5-60 log yf + 5.0. 

Calculated dimensionless intensities are compared with Laufer’s ( 1954) measure- 
ments in figure 9. A number of features of the calculated intensities are in good agree- 
ment with measurements. A maximum i n 2  is calculated at y+ = 10, close to the 
value at  which measured values o f 2  show a maximum. From the slopes of the (u2)4 
and (w”), curves a t  y = 0, values of (3)4 and (3)) can be calculated. It is noted that 
this ratio is approximately equal to three, in agreement with measurements. The 
calculated axial velocity fluctuations at large y+ are too small. This is a consequence 
of the simple matching that is used, in particular, the assumption of a constant axial 
velocity, U,, in the well mixed region. The calculated normal velocity fluctuations are 
too large at  large yf, reflecting the fact that the assumption of a completely coherent 
motion up to yo+ is only an approximation. 

Figure 10 compares values of the skewness and the flatness of the turbulent axial 
velocity with the measurements of Kreplin (Eckelmann 1974). The calculated skew- 
ness is positive for y+ < 12 and negative for y+ > 12. The calculated flatness has a 
minimum at yf 12. The above features have also been observed in experiments by 
Eckelmann (1974), Zaric (1972), Ueda & Hinze (1975) and Ueda & Mitzushina (1977). 

As in Willmarth & Lu (1971) and Wallace, Eckelmann & Brodkey (1972), calculated 
time averaged values of the product uv have been classified according to the sign of 
its components u and v in figure 10. Quadrant IV (u > 0, v < 0) is identified as inflows 
of high-speed fluid, quadrant I1 (u < 0, v > 0) ,  as ejections of low-speed fluid and 

- 
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FIGURE 12. Calculated space-time correlation of U ,  yof = 38, A+ = 100, TZ = 90. Az+ = 0, 
yre = 1.9. 1, Ay+ = 3.563; 2, Ay+ = 4.750; 3, Ay+ = 7.125; 4, Ay+ = 9.500; 5, Ay+ = 
by+ = 15.438; 7, Ay+ = 21.375; 8, Ay+ = 27.313; 9, Ayf = 33.250. 

= 0 
11.875; 6, 

quadrants I (u > 0, v > 0 )  and I1 (u < 0, v < 0)  as interactions between inflows and 
outflows. As seen in figure 11 the calculations agree with experiments (Brodkey et al. 
1974) in that quadrants IV and I1 each contribute approximately 70 per cent to the 
Reynolds stress and qaadrants I and I1 contribute - 40 per cent. Also in agreement 
with experiments the quadrant IV contribution is greater than the quadrant I1 
contribution for y+ < 22. 

All of the calculations of statistical quantities shown in figures 8, 9, 10 and 11 were 
done for y,$ = 45, A+ = 100, !PA = 100. Results for y,$ = 38, A+ = 100, T& = 90 were 
the same except for some minor differences: They showed a smoother variation of 
(p)* with y+, a change in the sign of the skewness at y+ = 10, and a change in the relative 
importance of the contribution of quadrant IV and of quadrant I1 to the Reynolds 
stress a t  y+ = 18. 

Space time correlations of the axial velocity were calculated only for y$ = 38, 
A+ = 100, T& = 90. These are shown in figure 12. The separation is in a direction 
normal to the wcuil In agreement with experiments (Eckelmann 1974; Ueda 8r. 
Mitzushina 1977) the u pattern &se to the wall lags behind the u pattern far from 
the wall. The time a t  which the space-time correlation reaches its maximum increases 
with separation distance by+. From the same figure it is seen that the axial correlation 
with zero time delay, Ruu(O,Ay) (yrel = 0, Ax = 0, Az = 0, At = 0) ,  decreases with 
increasing separation distance y, indicating that coherency need not require a corre- 
lation of unity. This decrease in R,,(O, Ay) is a consequence of the change of the phases 
of the velocity fluctuations with distance from the wall that is reflected in the time 
variation of the structure. 
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7. Selection of parameters 
The parameters used in this model are either associated with the dimensions of the 

region of coherent motions (yo,A) or with the boundary conditions for the velocity 
at the upper boundary (TB, A, wL, U,). In  0 3 it was mentioned that wL and U, are 
determined from the conditions 

and 

respectively. These restrictions reduced the number of parameters at our disposal to 
three. 

The spanwise length of the region of coherent motions, A, is taken to be equal to 
the spanwise spacing of the dye streaks which, for turbulent flows over a smooth 
and plane wall, has been determined experimentally to be A+ = 100 & 20 (Kline et al. 
1967; Kim et al. 1971). 

The selection of the upper boundary was largely based on the visual observations 
of Kline et al. (1967). They observed that fluid in low speed regions moves slowly 
downstream in the region 0 < y+ < 10. At the initiation of a burst this fluid was 
observed to move quickly away from the wall in the region 10 < y+ < 40 and to 
break up into chaotic motions in the region y+ > 40. This description also seems to be 
in accord with visual observations by Corino & Brodkey (1969) and Nychas et al. 
(1973). However, there seems to be some variation in the definition of the region 
where chaotic motion is initiated. From these considerations we have used yo+ = 
405 10. 

A period for the spanwise disturbances that is consistent with the observed bursting 
period was selected. However, since it is tacitly assumed that these disturbances 
contain most of the turbulent energy in the viscous sublayer, it seems desirable that 
their frequency correspond to the median frequency of the spectrum of the velocity 
fluctuations close to the wall. Hanratty et al. (1977) summarize measurements of the 
spectrum of the fluctuations of the wall velocity gradient, in pipe flows made in our 
laboratory and of the x component of the turbulent velocity fluctuations made in 
pipeflowsbyBakewel1 &Lumley(1967)aty+ = 2-56andbyLaufer (1954)aty+ = 5-91. 
Over the range of Reynolds numbers covered in these experiments it is found that the 
median frequency in Hertz is f, = 0.9 x 10-2 u*~/ /Y .  The visual measurements of the 
bursting frequency by Schraub & Kline and by Runstadler, Kline & Reynolds (sum- 
marized by Kim et al. 1971) give a bursting frequency of fs = u*”v in close 
agreement with the median frequency of the velocity fluctuations. Estimates of the 
bursting period made by analysing velocity signals from a hot wire anemometer are 
summarized by Laufer & Narayanan (1971). These indicate that fB v/u*2 decreases 
with increasing Reynolds number. However, as pointed out by Kim et al. (1971), 
there is a need to check these hot wire techniques directly against visual observations 
to insure that the two are directly related. On the basis of the above considerations 
we have chosen TS as apprxomately equal to A+. If the suggestion of Laufer & 

23-2 
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Narayanan is correct the bursting period is much larger than the period of the energy 
containing eddies a t  very large Reynold8 numbers and the model presented in this 
paper would not represent flow fluctuations at  very large Reynolds numbers. 

The model intends to describe the kinematics of a coherent flow which has strong 
convective motions. This requirement can be met if in the equations of motion the 
inertia and transient terms are equally important. The ratio of these terms is 

inertia terms wk T& 
transient terms A+ ' 

N- 

Since wi is of order unity, the above choice of T& and A+ would satisfy this condition. 
A similar order of magnitude analysis gives 

viscous terms T& 
transient terms 8:' 

N -  

and 
viscous terms A+ 
inertia terms w$ 8:'' 

N- 

(23) 

(24) 

where 8: is the dimensionless distance from the wall over which viscous effects are 
important. From the above, the following estimate of 8: is obtained: 

Thus for our choices of A+ and T+ the term S,+/A+ = O( 10-l) and 8; will bemuch smaller 
than yo+. 

There is some leeway, within the above stated bounds, in the choice of A+, TB, yof. 
We explored a number of possibilities and settled on the following further criteria 
for final choices with which to examine the details of the calculated flow field: (1) 
The mean velocity profile in the immediate vicinity of the wall satisfies the relation 
8+ = y+. (2) The calculated relation for the variation of the spanwise intensity is 
reasonably smooth throughout the viscous wall region. Our choice of the second 
criteria was associated with belief that this might be more consistent with the assump- 
tion of coherency. There are a number of triplets (yz, A+, TB) which satisfy the above 
two criteria. Two of these (yof = 45, A+ = 100, Ti = 100) and (yo' = 38, A+ = 100, 
Tk = 90) were discussed in the previous section. 

Hatziavramidis (1  978) has presented calculated profiles of the average velocity and 
of the turbulent intensities for a number of different cases. However, the influence 
of TA and A+ could not be defined because of the expense that would be involved in 
doing a sufficiently comprehensive study to come to any definite conclusions. We will 
just cite some of his results here. 

Calculations for yof = 38, Ti = 90 and A+ = 50, 100, 150 showed that the influence 
of increasing A+ was to decrease the slope of the a+ versus y+ relation at y++ 0;  i.e. 
to cause drag-reduction. The profile of (G)* for A+ = 150 showed almost a monotonic 
decrease of the slope, whereas decreasing the value of A+ made this profile more 
inflexional. 

Calculations for yo = 45, A+ = 100, T& = 40 gave a slope of the mean velocity at 
yf -+ 0 significantly greater than unity, i.e. a drag increase. The profile of the transverse 
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turbulent velocity profile for this case showed a minimum between y+ = 20 and 
y+ = 30. 

Calculations for Ti = 100, A+ = 100 and y$ = 32, 38, 45 showed that the slope of 
mean velocity profile a t  y+ -+ 0 decreased with increasing y$. The profile of the trans- 
verse turbulent velocity for y$ = 32 showed a smoothly decreasing slope. The profile 
of the transverse velocity for the other two cases was inflexional but did’not show any 
minimum. 

8. Closure 
The rather good agreement between the calculations presented in this paper and 

qualitative aspects of presently available measurements suggests that many of the 
observed phenomena in the viscous wall layer are a consequence of a viscous inter- 
action between the turbulent flow and the wall caused,by slight spanwise deviations 
from the mean flow direction of the fluid at y+ z 30. The calculations suggest that if 
the lateral scale and the period of these deviations are approximately equal to the 
spacing of the observed streaky structure and the time interval between bursts, a 
localized rather large outward flow of low momentum fluid from the viscous wall 
region to the outer flow occurs periodically. We identify these events as ‘bursts’. 

The paper does not attempt to  examine the influence this flow of low momentum 
fluid from the wall on the generation of turbulence in the outer flow or on the deter- 
mination of A+ or T&. Consequently, as pointed out in the introduction, it does not 
answer the question of whether the viscous wall region is ‘passive’ or drives the 
turbulence throughout the boundary layer. 

In addition to the obvious limitation of representing turbulence with a regular 
eddy pattern there are a number of other shortcomings of this model. These include 
the rather simple method of matching a completely coherent inner flow with well- 
mixed outer flow, the specification of the conditions in the outer flow and the assump- 
tion of homogeneity in the x direction. 

The comparison of calculated results with measurements indicates that the flow 
is not completely coherent up to y+ = 30. The values of the spatial correlation shown 
in figure 12 are larger than the measurements reported by Eckelmann (1974). In  
addition, the assumption of complete coherency up to y+ = 30 requires much larger 
values of the normal velocity at the edge of the viscous wall layer than is indicated by 
measurements. These comparisons indicate that the assumption of coherency is 
reasonably accurate for y+ < 15 but becomes less acceptable for y+ > 15. 

The use of u = U, = constant as a boundary condition at the edge of the viscous 
wall layer is responsible for the sharp drop in the calculated values of 2 for large y+. 
As illustrated by Fortuna in the development of his pseudo-steady state model (1970), 

the allowance of U, to  be a function of time gives a calculated2 variation with y+ 
which is in much better accord with measurements. It is of interest to note that even 
though p i s  assumed to be zero in the well mixed region, large values of Gare  generated 
in the viscous wall region by the secondary flow. Fortuna (1970) has suggested that 
the oscillations in u a t  y = yo are simply dampened in the viscous wall layer so that the 
experimentally observed maximum in 3 is probably the result of the contributions 
to x velocity fluctuations from the secondary flow. 
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In  addition to making large contributions to the velocity fluctuations close to a 
wall, the secondary flow also appears to be a major factor in determining the Reynold 
stress. This is evidenced by the good agreement with experiments of the calculations 
of the mean velocity profile and of the quadrant analysis of the Reynolds stress 
(see figure 11). 

Even though measurements of spatial correlation coefficients support the assump- 
tion of homogeneity in the x direction, there are a number of visual observations of 
localized disturbances for which the model cannot account. Since these events could 
be the result of an instability, it  is not clear that the simple inclusion of convective 
terms in the x direction in the model equations would predict such events. Therefore, 
it did not seem advantageous to us to forgo the simplifications involved in decoupling 
the x momentum equation from the y and z momentum equations in order to explore 
the influence of non-homogeneities in the mean flow direction. 

This work is supported by the Office of Naval Research under Grant NR 062-558. 
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